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ABSTRACT

The presence of aquifers significantly affects the thermal response of geothermal boreholes. Consequently,
theoretical models used in the design and sizing of geothermal heat exchangers must account for their pres-
ence. Existing models in the literature are effective for creeping groundwater flows, where heat convection
close to the borehole is weak compared to heat conduction and the resulting Peclet number is small compared
to unity. But strong groundwater flows, with Peclet numbers of order unity and beyond, are also present in
real-world applications, such as in high-permeability soils or when energy piles are involved. In these cases,
current models fail to correctly account for the flow field in the vicinity of the boreholes, leading to unsatis-
factory results or the need of empirical tuning parameters. By using asymptotic expansion techniques, a new
theoretical model for the thermal interaction of geothermal boreholes with strong groundwater flows has been
developed. It is physically sound, mathematically rigorous, and free of tuning parameters. Comparisons with
detailed numerical simulations demonstrate the models’ promising performance and accuracy. Furthermore,
the developed model is applicable to other heat transfer problems involving circular cylinders and potential
or Darcy flows, thereby extending its relevance beyond the field of low-temperature geothermal energy.
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1. INTRODUCTION

Heating and cooling of buildings represents almost 23% of mankind’s global energy consumption [1]. With
such a high share, decarbonization of heating, ventilation, and air conditioning (HVAC) systems emerges as
one of the top priorities in the roadmaps of many countries and regions. HVAC systems that harness geother-
mal energy are among the favorite options for the sought energy transition. Geothermal HVAC systems incor-
porate an electricity-driven water-to-water heat pump connected to several vertical boreholes that collectively
form the geothermal heat exchanger. As shown in Figure 1, each borehole includes multiple pipes forming
coaxial or U-shaped probes. These probes facilitate the flow of a heat carrying liquid, allowing the exchange
of heat with the surrounding ground. The space between pipes and ground is typically filled with impermeable
grout to enhance the heat exchange and prevent the potential cross-contamination of aquifers.

The correct sizing of geothermal heat exchangers is crucial for optimizing both the energy efficiency and
economic viability of geothermal HVAC systems. Ensuring the optimal design requires accurately forecasting
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Fig. 1 Sketch of a typical geothermal borehole.

the thermal response of geothermal heat exchangers over the whole lifespan of buildings, of typically 100
years, for which simplified theoretical models are used which are accurate, flexible, and computationally
affordable. These models take into account, among other things, the different heat transfer mechanisms present
in the ground. In the absence of aquifers, only heat conduction acts, whereas heat convection must also be
taken into account in the presence of flowing groundwaters.

Many theoretical models already exist in the literature that account for both heat transfer mechanisms [6].
They were mostly developed with creeping groundwater flows in mind for which heat convection is weak
compared to heat conduction in the vicinity of the boreholes. But strong groundwater flows do also exist in
real-world applications involving high-permeability soils or energy piles [3]. For such flows, current models
fail to correctly account for the flow field in the vicinity of the boreholes, leading to unsatisfactory results or
to the need of empirical tuning parameters [2]. To overcome these limitations, matched asymptotic expansion
techniques have been used by the authors to develop a physically sound and mathematically rigorous model
for the thermal interaction of geothermal boreholes with strong groundwater flows [5]. What follows is a brief
overview of the developed model.

2. FORMULATION

Thanks to the slenderness of typical geothermal boreholes, the heat transfer problem in the grout filling the
borehole and in the ground surrounding the borehole can be formulated in independent two-dimensional
planes perpendicular to the borehole [4]. These planes, shown in Figure 1, are coupled only through the
temperatures of the heat carrying liquid. Then, the grout/ground temperature T must obey the following
energy conservation equations in grout and ground, respectively, in which αb is the thermal diffusivity of
the grout, αg is the effective thermal diffusivity of the ground, (r, θ) are polar coordinates centered at the
borehole, and t represents time:
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The effective velocity components (vr, vθ) of the groundwater flow are given in terms of the effective seepage
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velocity U∞ of the aquifer and the borehole radius rb by the following expressions [4]:
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(
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)
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At the borehole wall, where r = rb, continuity in temperatures and normal heat fluxes is enforced through
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where kb is the thermal conductivity of the grout and kg is the effective thermal conductivity of the ground.

Next, boundary conditions at the Np pipes inside the borehole must be specified, for which a polar coordinate
system (rj , θj) centered at each pipe j is introduced. A prescribed heat injection rate per unit pipe length
qj(t) is then specified at each pipe j using the following expression in which rpj represents the outer radius
of pipe j [4]:
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This condition, however, is not mathematically sufficient, so an additional condition is enforced at each point
on the outer surface of pipe j, with the bulk temperature Tj(t) of the fluid in pipe j conveniently set to ensure
the prescribed heat injection rate per unit pipe length qj(t) is satisfied at all times [4]:
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The pipe’s inner thermal resistance Rpj , appearing in the previous two expressions, accounts for heat conduc-
tion within the pipe wall and for the convective transport of heat within the fluid.

Last, the unperturbed ground temperature T∞ is enforced far from the borehole, at r → ∞, and at the
beginning of the formulated heat transfer problem. That is, at t = 0.

3. ASYMPTOTIC SOLUTION

No exact solution is known to the formulated problem, so approximate solutions are sought instead. In the
present work, matched asymptotic expansion techniques are used for that purpose. These exploit the presence
of small parameters to decompose complex problems into simpler ones. For the considered problem, the small
parameter is the ratio between the characteristic transversal diffusion time tb ∼ r2b/αg and the characteristic
time of variation tq of the heating and cooling needs of the building: tb/tq ≪ 1 [5]. This ratio emerges in the
scale analysis of the different terms within the energy conservation equation in the ground,
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giving rise to two distinct regions. In the inner region, located at distances r ∼ rb, thermal inertia becomes
negligible compared to heat conduction as a consequence of tb/tq ≪ 1 [4, 5]. Heat convection, on the contrary,
is non-negligible there due to Peclet numbers of the groundwater flow, Pe = (U∞rb)/αg, being of order unity.
In the outer region, located further away from the borehole, thermal inertia recovers its importance, giving rise
to a rich heat transfer problem in which the velocity field can be approximated by an uniform flow stream.

Each of the described regions is solved separately [5]. The resulting expressions, which involve Mathieu
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Fig. 2 (Left) inner solution and (right) outer solution for Pe = 1.0 [5].

functions and modified Bessel functions of the second kind, are then matched at an intermediate distance
between the two regions for which both solutions are valid. The final outcome is the sought model for the
thermal interaction of geothermal boreholes with strong groundwater flows.

4. NUMERICAL EXAMPLE AND CONCLUSIONS

The accuracy of the developed model has been analyzed against detailed numerical simulations performed
with COMSOL. Figure 2 shows in black isolines the results of the proposed model superimposed to the color
map representing the results delivered by COMSOL. The chosen borehole configuration corresponds to the
one analyzed by the authors in recent publications [4, 5]. The obtained inner solution, shown on the left plot,
as well as the outer solution, shown on the right plot, perfectly match the results provided by COMSOL in
their respective regions of validity, evidencing the capabilities of the developed model.
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